Visualization of multiple opioid-receptor types in rat striatum after specific mesencephalic lesions.
نویسندگان
چکیده
In order to gain insight into a possible modulatory role for mu, delta, and kappa opioid receptors of the nigrostriatal dopaminergic pathway, we investigated the topographical organization of the receptors with respect to pre- and postsynaptic membranes. Dopaminergic terminals projecting from the substantia nigra to the corpus striatum were destroyed by unilateral injection of 6-hydroxydopamine into the substantia nigra. Quantitative receptor assays using highly specific radioligands were used to measure the density of striatal mu, delta, and kappa receptors before and after denervation. Denervation caused a 34 +/- 2% loss of striatal mu receptors and a 32 +/- 1% loss of striatal delta receptors on the lesioned side of the brain; in contrast, kappa receptors did not change significantly in density. Quantitative in vitro autoradiography was used to visualize the neuroanatomical pattern of receptors on lesioned and nonlesioned sides of the brain under the light microscope. Loss of mu receptors in striatal patches was striking in the ventrolateral areas of the striatum, whereas the most notable loss of delta receptors was found in the central striatum. Other brain areas did not differ significantly in mu receptor density between the lesioned and nonlesioned sides, as determined by autoradiography. These findings suggest that a high percentage of mu and delta receptors in the striatum are located on the nigrostriatal dopaminergic terminals and support the concept of a modulatory role for mu and delta opioid peptides in the nigrostriatal dopaminergic pathway.
منابع مشابه
Morphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex
Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels i...
متن کاملRole of μ-opioid receptor in parafascicular nucleus of thalamus on morphine-induced antinociception in a rat model of acute trigeminal pain
The parafascicular nucleus (PFN) of thalamus, as a supraspinal structure, has an important role in processing of nociceptive information. In addition, μ-opioid receptor contributes to supraspinal modulation of nociception. In the present study, the effects of microinjection of naloxone (a non-specific opioid-receptor antagonist) and naloxonazine (a specific μ-opioid receptor antagonist) were in...
متن کاملMolecular cloning and expression of a rat K opioid receptor
At least three types of opioid receptors have been identified in the nervous system. In this paper we report molecular cloning and expression of a rat K opioid receptor. PCR was performed on double-stranded cDNA derived from poly(A)+ RNA of the rat striatum with primers similar to those of Libert and co-workers [Libert, Parmentier, Lefort, Dinsart, Van Sande, Maenhaut, Simons, Dumont and Vassar...
متن کامل5-HT2A Serotonin Receptor Density in Adult Male Rats’ Hippocampus after Morphine-based Conditioned Place Preference
Introduction: A close interaction exists between the brain opioid and serotonin (5-HT) neurotransmitter systems. Brain neurotransmitter 5-HT plays an important role in the regulation of reward-related processing. However, a few studies have investigated the potential role of 5-HT2A receptors in this behavior. Therefore, the aim of the present study was to assess the influence of...
متن کاملResponse of striosomal opioid signaling to dopamine depletion in 6-hydroxydopamine-lesioned rat model of Parkinson's disease: a potential compensatory role
The opioid peptide receptors consist of three major subclasses, namely, μ, δ, and κ (MOR, DOR, and KOR, respectively). They are involved in the regulation of striatal dopamine functions, and increased opioid transmissions are thought to play a compensatory role in altered functions of the basal ganglia in Parkinson's disease (PD). In this study, we used an immunohistochemistry with tyramide sig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 84 18 شماره
صفحات -
تاریخ انتشار 1987